Autoregulation of the MisR/MisS two-component signal transduction system in Neisseria meningitidis.
نویسندگان
چکیده
Two-component regulatory systems are involved in processes important for bacterial pathogenesis. The proposed misR/misS (or phoP/phoQ) system is one of four two-component systems of the obligate human pathogen Neisseria meningitidis. Inactivation of this system results in loss of phosphorylation of the lipooligosaccharide inner core and causes attenuation in a mouse model of meningococcal infection. MisR and the cytoplasmic domain of MisS were purified as His6 and maltose binding protein fusion proteins, respectively. The MisS fusion was shown to be autophosphorylated in the presence of ATP, and the phosphoryl group was subsequently transferred to MisR. The phosphotransfer reaction was halted with a MisR/D52A mutation, while a MisS/H246A mutation prevented autophosphorylation. Specific interaction of phosphorylated MisR (MisR approximately P) and MisR with the misR promoter was demonstrated by gel mobility shift assays, where MisR approximately P exhibited higher affinity than did the nonphosphorylated protein. The transcriptional start site of the misRS operon was mapped, and DNase I protection assays revealed that MisR interacted with a 15-bp region upstream of the transcriptional start site that shared no similarity to binding motifs of other two-component systems. Transcriptional reporter studies suggested that MisR phosphorylation is critical for the autoinduction of the misRS operon. Limited Mg2+ concentration failed to induce expression of the misRS operon, which is the only operon now proven to be under the direct control of the MisRS two-component system. Thus, these results indicate that the meningococcal MisRS system constitutes a functional signal transduction circuit and that both components are critical in the autoregulation of their expression.
منابع مشابه
MisR/MisS two-component regulon in Neisseria meningitidis.
Two-component regulatory systems are involved in processes important for bacterial pathogenesis. Inactivation of the misR/misS system in Neisseria meningitidis results in the loss of phosphorylation of the lipooligosaccharide inner core and causes attenuation in a mouse model of meningococcal infection. One hundred seventeen (78 up-regulated and 39 down-regulated) potential regulatory targets o...
متن کاملThe genes that encode the gonococcal transferrin binding proteins, TbpB and TbpA, are differentially regulated by MisR under iron-replete and iron-depleted conditions.
Neisseria gonorrhoeae produces two transferrin binding proteins, TbpA and TbpB, which together enable efficient iron transport from human transferrin. We demonstrate that expression of the tbp genes is controlled by MisR, a response regulator in the two-component regulatory system that also includes the sensor kinase MisS. The tbp genes were up-regulated in the misR mutant under iron-replete co...
متن کاملThe MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae.
During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is like...
متن کاملCloning and expression of porA gene as the first step of a vaccine candidate study against Neisseria meningitidis serogroup A infection
Introduction: Neisseria meningitidis is a major causative agent of bacterial septicemia and meningitis in human. PorA is a major component of the outer membrane of N. meningitidis and functions as a cationic Porin. This study aimed to clone and determine the expression of PorA as the first step for producing a proper antigen in a vaccine study against N. meningitidis. Methods: An approximately ...
متن کاملDevelopment of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX
Background: Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 14 شماره
صفحات -
تاریخ انتشار 2006